A force field for virtual atom molecular mechanics of proteins.
نویسندگان
چکیده
Activities of many biological macromolecules involve large conformational transitions for which crystallography can specify atomic details of alternative end states, but the course of transitions is often beyond the reach of computations based on full-atomic potential functions. We have developed a coarse-grained force field for molecular mechanics calculations based on the virtual interactions of C alpha atoms in protein molecules. This force field is parameterized based on the statistical distribution of the energy terms extracted from crystallographic data, and it is formulated to capture features dependent on secondary structure and on residue-specific contact information. The resulting force field is applied to energy minimization and normal mode analysis of several proteins. We find robust convergence in minimizations to low energies and energy gradients with low degrees of structural distortion, and atomic fluctuations calculated from the normal mode analyses correlate well with the experimental B-factors obtained from high-resolution crystal structures. These findings suggest that the virtual atom force field is a suitable tool for various molecular mechanics applications on large macromolecular systems undergoing large conformational changes.
منابع مشابه
Stereochemistry of Polypeptide Conformation in Coarse Grained Analysis
The conformations available to polypeptides are determined by the interatomic forces acting on the peptide units, whereby backbone torsion angles are restricted as described by the Ramachandran plot. Although typical proteins are composed predominantly from α-helices and β-sheets, they nevertheless adopt diverse tertiary structure, each folded as dictated by its unique amino-acid sequence. Desp...
متن کاملSolvent Effect on Aquaporin4
Aquaporins are integral membrane proteins from a larger family of major intrinsic proteins that formpores in the membrane of biological cells. Aquaporins form tetramers in the cell membrane with eachmonomer acting as a water channel.In this research, the AQP4 tetramer was modeled from its PDBstructure file, then, we have performed the intraction of aquaporin4 in different temperatures (298k,300...
متن کاملComputation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase.
Many proteins function through conformational transitions between structurally disparate states, and there is a need to explore transition pathways between experimentally accessible states by computation. The sizes of systems of interest and the scale of conformational changes are often beyond the scope of full atomic models, but appropriate coarse-grained approaches can capture significant fea...
متن کاملAn evaluation of force-field treatments of aromatic interactions.
Experimental measurements of edge-to-face aromatic interactions have been used to test a series of molecular mechanics force fields. The experimental data were determined for a range of differently substituted aromatic rings using chemical double mutant cycles on hydrogen-bonded zipper complexes. These complexes were truncated for the purposes of the molecular mechanics calculations so that pro...
متن کاملReview Protein modeling and structure prediction with a reduced representation
Protein modeling could be done on various levels of structural details, from simplified lattice or continuous representations, through high resolution reduced models, employing the united atom representation, to all-atom models of the molecular mechanics. Here I describe a new high resolution reduced model, its force field and applications in the structural proteomics. The model uses a lattice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 37 شماره
صفحات -
تاریخ انتشار 2009